温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
3. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:QQ 403074932
第一课时:圆柱的体积邓庄小学路长营教学内容:人教版小学数学六年级下册p25-30 教学目标:1、知识与技能 运用迁移规律,让学生探索并掌握圆柱体积的计算方法,并能运用计算公式解决简单的实际问题。 2、过程与方法 让学生经历观察、实验、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,渗透数学思想,体验数学研究的方法。 3、情感态度与价值观 通过圆柱体积计算公式的推导、运用的过程,体验数学问题的探索性和挑战性,感受数学思考过程的条理性和数学结论的确定性,获得成功的喜悦。教学重点:圆柱体体积的计算公式的推导过程及其应用。 教学难点:理解圆柱体体积公式的推导过程。 教学准备:圆柱体积公式推导演示学具、多媒体课件。 教学过程: 一、复习导入 前几节课我们已经认识了圆柱体,学会了计算圆柱的侧面积、底面积和表面积,今天这节课我们继续来研究圆柱的体积。同学们回忆一下,什么叫体积?(指名回答,生:物体所占空间的大小叫做体积。)我们学会计算哪些立体图形的体积呢?1、呈现长方体、正方体和圆柱的直观图。 2、揭题:老师为大家准备了长方体、正方体、圆柱。其中我们学过了长方体和正方体的体积计算方法。大家想不想知道圆柱体的体积计算方法?今天我们一起来探索圆柱体积的计算方法。\n3、教师:在研究这个问题之前,我们先来复习一下,圆的面积是怎样计算的呢?圆的面积计算公式是怎样推导出来的?(学生:把一个圆,平均分成若干个扇形,拼成一个近似长方形,长方形的长相当于圆周长的一半,宽相当于圆的半径。)根据学生的叙述,教师课件演示。二、自主探究,精讲点拨 1、教师:那么今天我们要研究的圆柱的体积,能不能也像刚才圆的面积公式推导过程一样,转化成我们学过的立体图形,推导出计算圆柱体积的公式呢? 2、学生小组讨论、交流。 教师:同学们自己先在小组里讨论一下 (1)你准备把圆柱体转化成什么立体图形? (2)你是怎样转化成这个立体图形的? (3)转化以后的立体图形和圆柱体之间有什么关系? 3、推导圆柱体积公式。 学生交流,教师动画演示。 (1)把圆柱体转化成长方体。 (2)怎样转化成长方体呢?(指名叙述:把圆柱体底面分成平均分成若干个扇形(例如分成16份),然后把圆柱切开,拼成一个近似长方体。)你会操作吗?(学生演示教具) (3)教师说明:底面扇形平均分的份数越多,拼成的立体图形就越接近长方体。(4)教师:这个长方体与圆柱体比较一下,什么变了?什么没变?(生:形状变了体积大小没变。) (5)推导圆柱体积公式。 讨论:切拼成的长方体与圆柱体有什么关系?(学生回答:切拼成的长方体的体积相当于圆柱的体积,长方体的底面积相当于圆柱体的底面积,长方体的高相当于圆柱体的高。教师根据学生回答演示课件。) 教师:圆柱的体积怎样计算?用字母公式,怎样表示?板书:圆柱的体积 = 底面积×高 V=Sh4.讲解26页例6。 \n(1)教师提出问题引导学生理解题意 ①杯子要怎样才能装下牛奶?问杯子能否装下牛奶是什么意思? 实际是要做什么? ②题目已知什么,要求什么? ③要求杯子的容积先求什么? ④怎样求出圆柱杯子的底面积? (2)不看答案,要求学生独立完成,并请学生在黑板上演示,集体 订正错误。在解题时要注意什么?让学生自己来概括总结,通过学生的语言说出:(1)单位要统一(2)求出的是体积要用体积单位。 三、练习巩固,灵活应用 闯关1.一根圆柱形钢材,底面积是75平方厘米,长是90厘米。它的体积是多少? 让学生试做,集体反馈。 闯关2.想一想:如果已知圆柱底面的半径(r)和高(h),圆柱的体积的计算公式是什么?如果已知圆柱底面的直径(d)和高(h)呢?如果已知圆柱的底面周长(C)和高(h)呢?学生讨论、交流、汇报。 闯关3、将一个圆柱体沿着底面直径切成两个半圆柱,表面积增加了40平方厘米,圆柱的底面直径为4厘米,这个圆柱的体积是多少立方厘米?四、课堂小结 学习本节课你有哪些收获?还有哪些疑惑?(生汇报收获) 五、布置作业 \n教科书第28页练习五第1-4题。板书设计: 圆柱的体积 长方体的体积=底面积×高 圆柱的体积=底面积×高 V=Sh\n第二课时用圆柱的体积解决问题教学设计 一、教学目标 (一)知识与技能 用已学的圆柱体积知识解决生活中的实际问题,并渗透转化思想。 (二)过程与方法 经历探究不规则物体体积的转化、测量和计算过程,让学生在动手操作中初步建立“转化”的数学思想,体验“等积变形”的转化过程。 (三)情感态度和价值观 通过实践,让学生在合作中建立协作精神,并增强学生“用数学”的意识。 二、教学重难点 \n教学重点:利用所学知识合理灵活地分析、解决不规则物体的体积的计算方法。 教学难点:转化前后的沟通。三、教学准备 每组一个矿泉水瓶(课前统一搜集农夫山泉矿泉水瓶,装有适量清水,水高度分别为6、7、8、9厘米),直尺四、教学过程 (一)复习旧知,做好铺垫 1.板书:圆柱的体积。 问:圆柱的体积怎么计算?体积和容积有什么区别? 2.揭题:这节课,我们要根据这些体积和容积的知识来解决生活中的实际问题。(完整板书:用圆柱的体积解决问题。) 【设计意图】通过复习圆柱的体积计算方法以及体积和容积之间的联系和区别,为学习新知做好知识上的准备。 (二)探索实践,体验转化过程 1.创设情境,提出问题。 每个小组桌子上有一个没有装满水的矿泉水瓶。 教师:原本这是一瓶装满水的矿泉水,已经喝了一部分,你能根据它来提一个数学问题吗?(随机板书) 预设1:瓶子还有多少水?(剩下多少水?)预设2:喝了多少水?(也就是瓶子的空气部分。) \n预设3:这个瓶子一共能装多少水?(也就是这个瓶子的容积是多少?) 2.你觉得你能轻松解决什么问题? (1)预设1:瓶子有多少水?(怎么解决?) 学生:瓶子里剩下的水呈圆柱状,只要量出这个圆柱的底面直径和高就能算出它的体积。 教师:需要用到什么工具?(直尺)你想利用直尺得到哪些数据?(底面直径、水的高度) 小结:知道了底面直径和水的高度,要解决这个问题的确轻而易举。请你准备好直尺,或许等会儿有用哦!(2)预设2:喝了多少水? 学生:喝掉部分的形状是不规则,没有办法计算。 教师:当物体形状不规则时,我们想求出它的体积可以怎么办? 教师相机引导:能否将空气部分变成一个规则的立体图形呢? 学生能说出方法更好,不能说出则引导:我们不妨把瓶子倒过来看看,你发现了什么?引导学生发现:在瓶子倒置前后,水的体积不变,空气的体积不变,因此,喝了多少水=倒置后空气部分的体积,倒置后空气部分是一个圆柱,要求出它的体积需要哪些数据?(倒置后空气的高度) 小结:这个方法不错,我们利用水的流动性成功地将不规则的空气部分转化成了一个圆柱体,得到所需数据后能求出它的体积。这样一来,第3个问题还难得到你吗? (3)怎么求这个矿泉水瓶的容积?引导学生得出:倒置前水的体积+倒置后空气的体积=瓶子容积\n【设计意图】课本中的例题呈现如下,题是直接呈现转化方法的,我是想先屏蔽相关数据信息和方法,通过激发学生解决问题的内在需求,根据自己的生活学习经验来想办法解决,才有了对数学情境的改编,以期通过转化、观察、对比,让学生发现倒置前后两部分立体图形之间的相同点,沟通两部分体积之间的内在联系,顺利地把新知转化为旧知,分散了难点,从而找到解决问题的方法。3.小组合作,测量计算。 (矿泉水瓶内直径为6cm) 教师:方法找到了,接下来能否正确求出瓶子的容积就看你们的了! (1)课件出示例7:一个内直径是8cm的瓶子里,水的高度是7cm,把瓶盖拧紧倒置放平,无水部分是圆柱形,高度是18cm。这个瓶子的容积是多少? 例题是直接呈现转化方法的,我是想先屏蔽相关数据信息和方法,通过激发学生解决问题的内在需求,根据自己的生活学习经验来想办法解决,才有了对数学情境的改编,以期通过转化、观察、对比,让学生发现倒置前后两部分立体图形之间的相同点,沟通两部分体积之间的内在联系,顺利地把新知转化为旧知,分散了难点,从而找到解决问题的方法。 一个内直径是( )的瓶子里,水的高度是( ),把瓶盖拧紧倒置放平,无水部分是圆柱形,高度是( )。这个瓶子的容积是多少?(测量时取整厘米数) (2)四人小组合作: A.组长安排好分工: 要量出所需数据,其他组员要监督好测量方法与结果是否正确,要按要求把题目填完整B.组内互相说一说:倒置前后哪两部分的体积不变? 矿泉水瓶的容积=( )( )。 C.做好以上准备工作后,利用所得数据独立计算,再组内校对结果是否正确。 【设计意图】这一环节让学生大胆动手操作,在实践中不断发现解决问题,在同伴的交流中拓展自己的思维,让学生在合作中建立协作精神。 4.交流反馈。 \n教师巡查,选择矿泉水瓶中原有水高度分别6、7、8、9厘米的同学板演。 瓶中水高度为6厘米的: 3.14×(6÷2)2×6+3.14×(6÷2)2×13=3.14×9×(6+13)≈537(毫升)。 瓶中水高度为7厘米的: 3.14×(6÷2)2×7+3.14×(6÷2)2×12 =3.14×9×(7+12)≈537(毫升)。 瓶中水高度为8厘米的: 3.14×(6÷2)2×8+3.14×(6÷2)2×11 =3.14×9×(8+11)≈537(毫升)。 瓶中水高度为9厘米的: 3.14×(6÷2)2×9+3.14×(6÷2)2×10 =3.14×9×(9+10)≈537(毫升)。(三)练习巩固,学以致用 1.数学书P27做一做。(1)学生独立思考,解决问题。 (2)把自己的想法与同桌说一说。 (3)交流反馈:重点交流如何转化,倒置后哪两部分体积不变? 求小明喝了多少水实际上是求矿泉水瓶上面无水部分的体积,这部分为不规则的立体图形。 将水瓶倒置后不规则容器转化成了圆柱:该圆柱体积=小明喝了的水。 3.14×(6÷2)2×10=282.6(毫升)。【设计意图】从生活中常见的吊瓶问题引出,感受数学与生活的密切联系,能根据图像提取解决问题的有效信息 ,既提升了所学知识,又关注了学生的思考,培养学生的分析、解决问题能力。\n(四)全课总结,提升认识 教师:回忆一下,今天这节课有什么收获? 教师和学生共同小结:求不规则的立体图形的体积可以将它转化成为规则的立体图形,这节课我们主要是将不规则的立体图形转化成为圆柱,用圆柱的体积计算方法来解决问题。 在解决问题时,主要要弄清楚转化前后两部分之间的关系。 【设计意图】通过小结,让学生自主地对回顾本课所学知识进行梳理总结,通过归纳与提炼,让学生明确转化思想在数学学习中的重要性